時間:2023-08-21 16:55:38
序論:寫作是一種深度的自我表達。它要求我們深入探索自己的思想和情感,挖掘那些隱藏在內心深處的真相,好投稿為您帶來了七篇建筑設計新規范范文,愿它們成為您寫作過程中的靈感催化劑,助力您的創作。
【關鍵詞】高層結構;設計
一、結構選型
對于高層結構而言,在工程設計的結構選型階段,結構工程師應該注意以下幾點:
1、結構的規則性問題。新舊規范在這方面的內容出現了較大的變動,新規范在這方面增添了相當多的限制條件,例如:平面規則性信息、嵌固端上下層剛度比信息等,而且,新規范采用強制性條文明確規定“建筑不應采用嚴重不規則的設計方案。”因此,結構工程師在遵循新規范的這些限制條件上必須嚴格注意,以避免后期施工圖設計階段工作的被動。
2、結構的超高問題。在抗震規范與高規中,對結構的總高度都有嚴格的限制,尤其是新規范中針對以前的超高問題,除了將原來的限制高度設定為A級高度的建筑外,增加了B級高度的建筑,因此,必須對結構的該項控制因素嚴格注意,一旦結構為B級高度建筑甚或超過了B級高度,其設計方法和處理措施將有較大的變化。在實際工程設計中,出現過由于結構類型的變更而忽略該問題,導致施工圖審查時未予通過,必須重新進行設計或需要開專家會議進行論證等工作的情況,對工程工期、造價等整體規劃的影響相當巨大。
3、嵌固端的設置問題。由于高層建筑一般都帶有二層或二層以上的地下室和人防,嵌固端有可能設置在地下室頂板,也有可能設置在人防頂板等位置,因此,在這個問題上,結構設計工程師往往忽視了由嵌固端的設置帶來的一系列需要注意的方面,如:嵌固端樓板的設計、嵌固端上下層剛度比的限制、嵌固端上下層抗震等級的一致性、在結構整體計算時嵌固端的設置、結構抗震縫設置與嵌固端位置的協調等等問題,而忽略其中任何一個方面都有可能導致后期設計工作的大量修改或埋下安全隱患。
4、短肢剪力墻的設置問題。在新規范中,對墻肢截面高厚比為5~8的墻定義為短肢剪力墻,且根據實驗數據和實際經驗,對短肢剪力墻在高層建筑中的應用增加了相當多的限制,因此,在高層建筑設計中,結構工程師應盡可能少采用或不用短肢剪力墻,以避免給后期設計工作增加不必要的麻煩。
二、地基與基礎設計
地基與基礎設計一直是結構工程師比較重視的方面,不僅僅由于該階段設計過程的好與壞將直接影響后期設計工作的進行,同時,也是因為地基基礎也是整個工程造價的決定性因素,因此,在這一階段,所出現的問題也有可能更加嚴重甚至造成無法估量的損失。
在地基基礎設計中要注意地方性規范的重要性問題。由于我國占地面積較廣,地質條件相當復雜,作為國家標準,僅僅一本《地基基礎設計規范》無法對全國各地的地基基礎都進行詳細的描述和規定,因此,作為建立在國家標準之下的地方標準。地方性的“地基基礎設計規范”能夠將各地方的地基基礎類型和設計處理方法等一些成熟的經驗描述和規定得更為詳細和準確,所以,在進行地基基礎設計時,一定要對地方規范進行深入地學習,以避免對整個結構設計或后期設計工作造成較大的影響。
三、結構計算與分析
在結構計算與分析階段,如何準確,高效地對工程進行內力分析并按照規范要求進行設計和處理,是決定工程設計質量好壞的關鍵。由于新規范的推出對結構整體計算和分析部分相當多的內容進行了調整和改進,因此,結構工程師也應該相當地對這一階段比較常見的問題有一個清晰的認識。
1、結構整體計算的軟件選擇。目前比較通用的計算軟件有:SATWE、TAT、TBSA或ETABS、SAP等,但是,由于各軟件在采用的計算模型上存在著一定的差異,因此導致了各軟件的計算結果有或大或小的不同。所以,在進行工程整體結構計算和分析時必須依據結構類型和計算軟件模型的特點選擇合理的計算軟件,并從不同軟件相差較大的計算結果中,判斷哪個是合理的、哪個是可以作為參考的,哪個又是意義不大的,這將是結構工程師在設計工作中首要的工作。否則,如果選擇了不合適的計算軟件,不但會浪費大量的時間和精力,而且有可能使結構有不安全的隱患存在。
2、是否需要地震力放大,考慮建筑隔墻等對自振周期的影響。該部分內容實際上在新老規范中都有提及,只是,在新規范中根據大量工程的實測周期明確提出了各種結構體系下高層建筑結構計算自振周期折減系數。
3、振型數目是否足夠。在新規范中增加一個振型參與系數的概念,并明確提出了該參數的限值。由于在舊規范設計中,并未提出振型參與系數的概念,或即使有該概念,該參數的限值也未必一定符合新規范的要求,因此,在計算分析階段必須對計算結果中該參數的結果進行判斷,并決定是否要調整振型數目的取值。
4、多塔之間各地震周期的互相干擾,是否需要分開計算。一段時間以來,大底盤,多塔樓的高層建筑類型大量涌現,而在計算分析該類型高層建筑時,是將結構作為一個整體并按多塔類型進行計算,還是將結構人為地分開進行計算,是結構工程師必須注意的問題。如果多塔間剛度相差較大,就有可能出現即使振型參與系數滿足要求,但是對某一座塔樓的地震力計算誤差仍然有可能較大,從而便結構出現不安全的隱患。
5、非結構構件的計算與設計。在高層建筑中,往往存在一些由于建筑美觀或功能要求且非主體承重骨架體系以內的非結構構件。對這部分內容,尤其是高層建筑屋頂處的裝飾構件進行設計時,由于高層建筑的地震作用和風荷載均較大,因此,必須嚴格按照新規范中增加的非結構構件的計算處理措施進行設計
四、結語
在今后的工作中,建筑結構設計人員需要重新認識自己工作的重要性,明確自己的責任,提高對結構設計質量安全問題的辨別能力,積累結構設計的工作經驗,使建筑結構設計工作行業逐步步入正軌,使建筑物的設計更安全、更合理。
參考文獻
[1]GB50010- 2002,混凝土結構設計規范[S].
高層建筑的平面布置應當規則、簡單,盡量避免凹進、突出等比較復雜的平面。必須注意的是結構平面布置的過程中應該盡量使剛度均勻,即結構的質心與剛心盡量接近,減少地震發生時的扭轉,扭轉對結構的危害非常之大。減少結構的扭轉:①加強結構抵抗扭轉的能力;②降低地震作用引起的扭轉。平面剛度布置是否均勻關系到能否減少地震作用過程中的扭轉作用。而影響平面剛度分布的主要因素是剪力墻的布置。不能把剪力墻集中布置在結構平面的一側或一端。大剛度抗側力單元偏置的結構在地震過程中會產生較大的扭轉,而對稱布置井筒、剪力墻有利于降低扭轉量。在周邊布置剛度很大的框筒,或在周邊布置剪力墻等,都有利于抵抗扭轉,能增加結構抗扭剛度。為了降低地震過程中的扭轉量,必須考慮平面上質量的分布,質量集中在周邊會加大扭轉,質量偏心會引起扭轉。
2高層建筑結構的設計特點
結構的延性是重要的結構設計標準,與較低矮的樓房相比,高層結構的柔度大一些,當發生地震時會發生較大的變形,為了使結構在塑性階段具有更強的變形能力,不會倒塌,必須要在結構上采取相應的措施,使結構具有較高的延性。側移已經成為控制的指標,與較低矮的樓房相對比,結構的側移已經成為影響高層結構設計的關鍵因素。由于高度的變化,水平荷載使結構的水平側移迅速增加,所以結構的側移必須在控制在一定的范圍之內。能忽略軸向變形,在高層建筑設計中,豎向荷載非常之大,能夠使受壓柱發生較大的軸向變形,從而使連續梁的彎矩發生不同的變化,使連續梁中部支座處的受拉彎矩變小,梁端支座處的和跨中的受拉彎矩增大,還會影響預制構件的下料長度,需要對下料長度進行調整,還會對構件的側移和剪力產生影響,會產生不安全的結果。最為重要的因素是水平荷載,樓房因為自重和樓面使用荷載在豎向構件產生的軸向應力和彎矩與高度成正比。水平荷載對結構產生的傾覆力矩和軸向應力與高度的二次方成正比。豎向荷載基本上數值的大小不會變化,而水平荷載的數值則變化范圍很大。
3高層建筑結構設計應注意的問題
3.1結構選型
(1)嵌固端的設置問題。因為高層建筑往往都帶有二層或二層以上的人防和地下室,嵌固端往往設置在人防頂板等位置,也有可能設置在地下室頂板之上,所以在這個問題上,結構設計工程師經常忽略了由嵌固端的設置引起的一系列值得注意的地方,如:在結構整體計算時嵌固端的設置、嵌固端上下層抗震等級的一致性、嵌固端樓板的設計、結構抗震縫設置、嵌固端上下層剛度比的限制與嵌固端位置的協調等相關問題,而忽略任何方面都有導致埋下安全隱患或后期設計工作的大量修改的可能。
(2)結構的超高問題。在高規與抗規中,關于結構的總高都做了嚴格的限定,特別在新規范中對于傳統的超高問題,除了將舊規范的限制高度設置為A級的建筑之外外,還加入了B級的建筑,所以應該嚴格注意對結構的該項控制因素,如果建筑為B級建筑或超過了B級,其處理措施和設計方法都會有很大的變化。在實際設計過程中,曾經出現過因為結構類型的變化而導致該問題被忽略,導致施工圖在審查過程中不能通過,需要開專家會議進行論證或必須重新進行設計等工作的情況,對工程造價、工期等的影響非常巨大。
(3)結構的規則性問題。新規范對這里的內容做出了較大的變動,新規范在這里增加了非常多的限定條件,譬如:嵌固端上下層剛度比信息、平面規則性信息等,另外新規范使用強制性條文,明確指出“建筑不適合采用非常不規則的設計方案。”所以結構工程師在查閱新規范的限定條件時必須密切關注,以使后期施工圖設計階段工作的不會被動。
3.2地基與基礎設計
在進行地基基礎設計時必須認識到地方性規范的重要。因為我國國土非常廣大,地質條件也相當相對較為復雜,作為國家標準,一本《地基基礎設計規范》是沒有辦法適用于全國各地的地基基礎,所以作為建立在部門規章之下的地方性規章。地方性的“地基基礎設計規范”能夠把不同地區的地基基礎設計處理方法等一些成功的經驗規定和描述得更加準確和詳細,因此,在地基基礎設計的工程中,必須深入地學習地方規范,以免對后期設計工作或整個結構設計造成較大的影響。結構工程師一直是比較重視地基與基礎設計,不只是因為此階段設計的好壞會直接影響后期工作,與此同時也是由于地基基礎也是所有工程造價的關鍵性因素,所以,在這一階段出現的問題,可能會是非常嚴重的甚至會造成無法估計的損失。
3.3結構計算與分析
在結構分析與計算過程中,如何高效、準確地對工程按照規范要求進行設計和處理并內力,關系到工程設計質量的好壞。因為新規范對結構整體分析和計算的部分內容做出了相當多的改進和調整,所以,對這一階段中的比較常見的問題必須有清晰的了解。(1)振型數目是不是充足。新規范增添了一個振型參與系數,而且明確指出了這個參數的限值。因為在舊設計規范里面,并沒有提到振型參與系數的,或就算有這個概念,這個參數的限值也不一定與新規范的要求符合,所以,在這個階段必須分析計算結果中該參數的結果,并且決定是不是要調整振型數目的取值。(2)地震力是否需要放大,分析建筑隔墻對自振周期的作用。實際上這部分內容在新老規范中都提到過,不過,新規范中根據大量實測周期明確指出了不同結構體系下高層建筑結構自振周期折減系數的取值。(3)選擇結構整體的計算軟件。當前比較常用的計算軟件的種類有很多,但是,由于各軟件采用的計算模型有很大的差異,所以導致了各種軟件的計算結果都有或小或大的差異。因此,在對工程整體結構分析和計算時一定要根據計算軟件模型的特點和結構類型選擇適合的計算軟件,并從不同軟件相差較大的計算結果中,判斷哪個是意義不大的、哪個是可以作為參考的、哪個是合理的,這是在設計工作中結構工程師首要的工作。不然,如果選擇了不合適的計算軟件,不但有可能使結構有不安全的隱患存在,而且會浪費大量的時間和精力。
4結束語
中圖分類號:TU318文獻標識碼:A文章編號:
摘要:隨著我國國民經濟不斷發展和人民生活的迅速提高。業主及建筑師的創新藝術使得鋼筋混凝土高層建筑發展被廣泛應用。高層建筑結構設計給工程設計人員提出了更高的要求,本文就結構設計中應注意的幾方面問題進行探討。
1高層建筑結構受力方面
對于一個建筑物的最初的方案設計,建筑師考慮更多的是它的空問組成特點,而不是詳細地確定它的具體結構。
建筑物底面對建筑物空間形式的豎向穩定和水平方向的穩定都是非常重要的,由于建筑物是由一些大而重的構件所組成,因此結構必須能將它本身的重量傳至地面,結構的荷載總是向下作用于地面的,而建筑設計的一個基本要求就是要搞清楚所選擇的體系中向下的作用力與地基土的承載力之間的關系,所以,在建筑設計的方案階段,就必須對主要的承重柱和承重墻的數量和分布作出總體設想。
對于低層、多層和高層建筑,豎向和水平向結構體系的設計基本原理都是相同的,但是,隨著高度的不斷增加。豎向結構體系成為設計的控制因素,其原因有兩個:其一,較大的垂直荷載要求有較大的柱、墻或者井筒;其二,側向力所產生的傾覆力矩和剪切變形要大得多。
與豎向荷載相比,側向荷載對建筑物的效應不是線性增加的,而隨建筑高度的增高迅速增大。例如,在所有條件相同時,在風荷載作用下,建筑物基底的傾覆力矩近似與建筑物高度的平方成正比,而其頂部的側向位移與高度的四次方成正比,地震的作用效應更加明顯。在高層建筑中,問題不僅僅是抗剪,而更重要的是整體抗彎和抵抗變形,可見,高層建筑的結構受力性能與低層建筑有很大的差異。
2結構選型階段
對于高層結構而言,在工程設計的結構選型階段,結構工程師應該注意以下幾點:
2.1結構的規則性問題。
新舊規范在這方面的內容出現了較大的變動,新規范在這方面增添了相當多的限制條件,例如:平面規則性信息、嵌固端上下層剛度比信息等,而且,新規范采用強制性條文明確規定“建筑不應采用嚴重不規則的設計方案。”因此,結構工程師在遵循新規范的這些限制條件上必須嚴格注意,以避免后期施工圖設計階段工作的被動。
2.2結構的超高問題。
在抗震規范與高規中。對結構的總高度都有嚴格的限制,尤其是新規范中針對以前的超高問題,除了將原來的限制高度設定為A級高度的建筑外,增加了B級高度的建筑,因此。必須對結構的該項控制因素嚴格注意,一旦結構為B級高度建筑甚或超過了B級高度,其設計方法和處理措施將有較大的變化。
在實際工程設計中,出現過由于結構類型的變更而忽略該問題。導致施工圖審查時未予通過,必須重新進行設計或需要開專家會議進行論證等工作的情況,對工程工期、造價等整體規劃的影響相當巨大。
2.3嵌固端的設置問題。由于高層建筑一般都帶有二層或二層以上的地下室和人防,嵌固端有可能設置在地下室頂板,也有可能設置在人防頂板等位置,因此,在這個問題上,結構設計工程師往往忽視了由嵌固端的設置帶來的一系列需要注意的方面,如:嵌固端樓板的設計、嵌固端上下層剛度比的限制、嵌固端上下層抗震等級的一致性、在結構整體計算時嵌固端的設置、結構抗震縫設置與嵌固端位置的協調等等問題,而忽略其中任何一個方面都有可能導致后期設計工作的大量修改或埋下安全隱患。
2.4短肢剪力墻的設置問題。在新規范中,對墻肢截面高厚比為5-8的墻定義為短肢剪力墻。且根據實驗資料和實際經驗,對短肢剪力墻在高層建筑中的應用增加了相當多的限制,因此,在高層建筑設計中,結構工程師應盡可能少采用或不用短肢剪力墻,以避免給后期設計工作增加不必要的麻煩。
3地基與基礎設計方面
地基與基礎設計一直是結構工程師比較重視的方面,不僅僅由于該階段設計過程的好與壞將直接影響后期設計工作的進行,同時,也是因為地基基礎也是整個工程造價的決定性因素,因此,在這一階段,所出現的問題也有可能更加嚴重甚至造成無法估量的損失。 在地基基礎設計中要注意地方性規范的重要性問題。由于我國占地面積較廣,地質條件相當復雜,作為國家標準,僅僅一本《地基基礎設計規范》無法對全國各地的地基基礎都進行詳細的描述和規定,因此,作為建立在國家標準之下的地方標準。
地方性的“地基基礎設計規范”能夠將各地方的地基基礎類型和設計處理方法等一些成熟的經驗描述和規定得更為詳細和準確,所以,在進行地基基礎設計時,一定要對地方規范進行深入地學習,以避免對整個結構設計或后期設計工作造成較大的影響。
4結構計算與分析方面
在結構計算與分析階段,如何準確,高效地對工程進行內力分析并按照規范要求進行設計和處理,是決定工程設計質量好壞的關鍵。由于新規范的推出對結構整體計算和分析部分相當多的內容進行了調整和改進,因此,結構工程師也應該相當地對這一階段比較常見的問題有一個清晰的認識。 4.1結構整體計算的軟件選擇。目前比較通用的計算軟件有:SATWE、TAT、TBSA或ETABS、SAP等,但是,由于各軟件在采用的計算模型上存在著一定的差異,因此導致了各軟件的計算結果有或大或小的不同。所以,在進行工程整體結構計算和分析時必須依據結構類型和計算軟件模型的特點選擇合理的計算軟件,并從不同軟件相差較大的計算結果中,判斷哪個是合理的、哪個是可以作為參考的,哪個又是意義不大的,這將是結構工程師在設計工作中首要的工作。否則,如果選擇了不合適的計算軟件,不但會浪費大量的時間和精力,而且有可能使結構有不安全的隱患存在。
4.2是否需要地震力放大,考慮建筑隔墻等對自振周期的影響。
該部分內容實際上在新老規范中都有提及,只是,在新規范中根據大量工程的實測周期明確提出了各種結構體系下高層建筑結構計算自振周期折減系數。
4.3振型數目是否足夠。
在新規范中增加一個振型參與系數的概念,并明確提出了該參數的限值。由于在舊規范設計中,并未提出振型參與系數的概念,或即使有該概念,該參數的限值也未必一定符合新規范的要求,因此,在計算分析階段必須對計算結果中該參數的結果進行判斷,并決定是否要調整振型數目的取值。
4.4多塔之間各地震周期的互相干擾,是否需要分開計算。一段時間以來,大底盤,多塔樓的高層建筑類型大量涌現,而在計算分析該類型高層建筑時,是將結構作為一個整體并按多塔類型進行計算,還是將結構人為地分開進行計算,是結構工程師必須注意的問題。如果多塔間剛度相差較大,就有可能出現即使振型參與系數滿足要求,但是對某一座塔樓的地震力計算誤差仍然有可能較大,從而便結構出現不安全的隱患。
4.5非結構構件的計算與設計。在高層建筑中,往往存在一些由于建筑美觀或功能要求且非主體承重骨架體系以內的非結構構件。對這部分內容,尤其是高層建筑屋頂處的裝飾構件進行設計時,由于高層建筑的地震作用和風荷載均較大。因此,必須嚴格按照新規范中增加的非結構構件的計算處理措施進行設計。
5結束語
總之,鋼筋混凝土高層結構設計是一個長期、復雜甚至循環往復的過程,任何在這過程中的遺漏或錯誤都有可能使整個設計過程變得更加復雜或使設計結果存在不安全因素。以上也只是筆者在設計過程中對問題一些淺薄的認識。
參考文獻
[1]肖峻,高層建筑結構分析與設計[J],中化建設,2008,(12)
關鍵詞:應急照明;高層住宅樓;控制;防火規范
隨著社會的發展,高層住宅樓越來越多,高層住宅樓具有面積大、結構復雜、人員密集、用火用電勇氣量大的特點,一旦發生火災,人員逃生和滅火救援都非常困難。高層住宅樓由于建筑層數多,垂直疏散距離長,人員疏散到安全場所所需時間較長。對于大多數高層住宅建筑(除100米以上的超高層建筑),沒有相應可靠的避難層,而且基本上都是一個單元只有一個疏散樓梯,一旦發生火災,人員疏散十分困難。應急照明在火災發生等特殊情況發生時的作用是毋容置疑的。
一、對高層住宅樓劃分的理解
根據《建筑設計防火規范》(GB50016-2014)第5.1.1民用建筑根據其建筑高度和層數可分為單、多層民用建筑和高層民用建筑。高層民用建筑根據其建筑高度、使用功能和樓層的建筑面積可分為一類和二類。民用建筑的分類應符合表1的規定。對于住宅建筑,《建筑設計防火規范》以建筑高度27米作為區分多層和高層住宅建筑的標準;對于高層住宅建筑,以54m劃分為一類和二類。代替了原國家標準《建筑設計防火規范》GB50016-2006和《高層民用建筑設計防火規范》GB50045-1995中按9層及18層的劃分標準。個人理解,隨著社會的發展,現在的高層住宅樓的戶型和風格越來越多樣化,出現了很多層高較高(有的層高達5.9米),而一般住宅樓的層高大概是2.8米到3.2米,這樣如果再用層數來劃分高層住宅樓,會出現同樣都是10層高層住宅樓,其建筑高度可能相差很多,如果再用層數來劃分,可能造成有些住宅樓本應該屬于二類高層,結果按照原有規范不需要按照二類高層設計,相關的應急照明設計也會出現問題。可見現有新規范用建筑高度來界定多層和高層住宅建筑的標準是非常人性化的。
二、高層住宅樓應急照明設置的相關依據
《住宅建筑電氣設計規范》(JGJ242-2011)的第9.3.1條、第9.3.2條、第9.3.3條分別規定了住宅建筑應該設置的應急照明。
三、高層住宅中應急照明的常見種類
應急照明方式常見的有以下幾種,如圖1所示,燈1、燈2、燈3、燈4、燈5和燈6分別代表了不同類型的應急照明的燈具。其中:燈1代表著事故時刻強制點亮型的疏散指示通道照明,常用在高層住宅樓的樓梯間,這類燈平時不點亮,在火災等事故時刻能夠強制點亮。燈2代表平時兼做一般照明的疏散通道照明,常用在高層住宅樓的樓梯間,平時可以正常的開啟或關閉,當事故發生時,如果該燈具處于開燈位狀態則繼續點亮工作,如何該燈具處于熄燈位置可以通過消防信號強行點亮。燈3代表常明型的應急照明燈具,常用在高層住宅樓的暗的樓梯間、電梯間及其前室中的疏散指示照明,此種應急照明燈,無論平時還是事故狀態始終處于點亮狀態。燈4代表常暗型的應急照明燈具,常用在高層住宅樓的明的樓梯間、電梯間及其前室中的疏散指示照明,此種應急照明燈,由于平時有自然光照明,不需要點亮,當事故時可以通過消防信號強行點亮。燈5代表采用感應型燈具的應急照明燈,此種燈具用于高層住宅的樓梯間,通過感應信號點亮,當發生事故時,無論是燈具處于感應點亮狀態,還是處于熄滅狀態,就可以點亮。燈6代表自帶蓄電池的疏散指示照明燈,此類燈具一般用于樓梯間、電梯間及其前室中的疏散指示照明,其平時有雙電源供電,為燈內蓄電池充電,當出現事故狀態,由具有分勵脫扣器的斷路器控制,使其燈具強行點亮。
四、結束語
應急照明的設計是高層住宅樓建筑電氣設計的一個重要組成部分,本文根據最新建筑電氣相關規范,提出了高層住宅樓應急照明設計的幾個問題。
參考文獻:
[1]JGJ242-2011.住宅建筑電氣設計規范[S].[2]GB50016-2014建筑設計防火規范[S].
我國的高層建筑的設計特點大部分都集中的體現在側移、結構延性、軸向變形和水平荷載等方面。而在一些豎零件中,由于樓房的自重問題以及樓面的使用荷載,而最終產生的彎矩數值還有軸力僅僅和樓房高度的成正比,另外由于豎向荷載較水平荷載具有的不確定性而具有確定性,所以,水平荷載往往在高層建筑中起到決定性的作用。而由于在水平荷載的作用下的結構側移變形會伴隨著這個高層建筑的樓層高度的增加而漸漸增大,所以,結構側移都是整個高層建筑設計的關鍵因素和控制指標。除此之外,結構延性也可以作為高層建筑設計的重要指標。為了保證真個高層建筑擁有足夠的結構延性,就需要使其結構在進入塑性變形的階段時仍然具有較強的變形能力而不會使自身出現倒塌的現象,須在其結構的處理上采取相應的措施。此外,在整個高層建筑的設計中同樣不能忽視高層建筑的軸向變形因素的影響。
二、高層建筑的構體系
2.1框架與剪力墻
當施工中單醫德框架體系的強度及剛度無法滿足施工的實際要求時,就需要在建筑平面的某些適當位置設立相應的增加較大的剪力墻來替代一部分框架,這就形成了框架-剪力墻體系。在受到水平方向力的影響時,框架和剪力墻都需要通過有足夠大的剛度的樓板以及連梁組成的協同工作的結構體系。
2.2剪力墻體系
當承受力的主體結構主體部分全部都是由平面剪力墻構件組成的時候,就形成了剪力墻體系。在這種體系當中,一堵剪力墻就能夠承受全部的垂直荷載及水平力。而剪力墻體系屬于剛性結構的一種,其位移的曲線一般都呈現為彎曲型。而剪力墻體系自身的強度和剛度都很高,并且具有一定的延展性,抗震、抗倒塌等性能比較優越,是一種較為優秀的結構體系,能建的高度大于框架-剪力墻的混合體系。
三、高層建筑結構的相關問題分析
3.1結構超高的問題
在國家新出臺的抗震規范和新規范中,對于建筑結構的總體高度有著一定的限制,尤其是新規范當中針對建筑物超高的問題,除此之外將以前高層建筑的高度限制設定為A級高度以外還新設立了B級高度,同時相應的處理措施以及設計方案也都有極大的改變。在工程師進行實際的工程設計工作時,可能出現的由于結構類型改變的問題從而忽略此類問題出現后將導致施工圖紙再進行審查工作時未能通過,需要進行重新的設計和召開相應的專家會議來進行確切論證的情況,對工程的工期、造價等等整體規劃都將造成很大的影響。
3.2短肢剪力墻設置問題
在新的施工規范中可以看到,對于短肢剪力墻的定義就是墻肢截面的高厚比為5~8的墻體,而且根據相應的實驗數據以及工程師自身的經驗,對于短肢剪力墻在高層建筑中的應用能力較低,同時也有比較高的限制,所以,在高層建筑的設計施工中,結構工程師應當盡可能的減少采用或不用短肢剪力墻,以避免產生關于設計方面的不必要的麻煩。
3.3嵌固端設置問題
我國目前的高層建筑大部分都自帶地下室和人防,正因為如此,這樣就有可能會將嵌固端設置在地下室的頂板上,當然也有可能會設置在人防頂板等等特殊位置,因此,就在這個問題的處理上,結構設計工程師經常會忽視了由嵌固端的設置位置不當帶來的一些需要注意的問題,比如:嵌固端樓板本身的設計、嵌固端上下層剛度比的上限等等問題,而建筑工程必須要嚴謹,任何一個細小的問題都有可能在未來造成嚴重的后果。
3.4結構規則性問題
在當前新舊規范在這方面的規則出現了極大的差異,新的規范在這方面新增加了許多的限制條件,而且,新的規范增加了強制性的條文規定“即建筑不能采用嚴重不符合規范的設計方案。”因此,結構設計工程師自工作室就必須要注意對待新規范當中的的某些限制條件,以防止出現在施工后期設計圖紙設計階段的工作改動。
四、總結
關鍵詞:高層建筑;結構設計;常見問題;分析簡述
1高層結構設計特點
水平荷載成為決定因素
一方面,因為樓房自重和樓面使用荷載在豎構件中所引起的軸力和彎矩的數值,僅與樓房高度的一次方成正比; 而水平荷載對結構產生的傾覆力矩, 以及由此在豎構件中引起的軸力,是與樓房高度的兩次方成正比;另一方面,對某一定高度樓房來說,豎向荷載大體上是定值,而作為水平荷載的風荷載和地震作用,其數值是隨結構動力特性的不同而有較大幅度的變化。
1.2軸向變形不容忽視
高層建筑中,豎向荷載數值很大,能夠在柱中引起較大的軸向變形,從而會對連續粱彎矩產生影響,造成連續粱中問支座處的負彎矩值減小,跨中正彎矩和端支座負彎矩值增大;還會對預制構件的下料長度產生影響, 要求根據軸向變形計算值, 對下料長度進行調整;另外對構件剪力和側移產生影響,與考慮構件豎向變形比較,會得出偏于不安全的結果。
1.3側移成為控制指標
與較低樓房不同,結構側移已成為高樓結構設計中的關鍵因素。 隨著樓房高度的增加,水平荷載下結構的側移變形迅速增大,因而結構在水平荷載作用下的側移應被控制在某一限度之內。
1.4 結構延性是重要設計指標
相對于較低樓房而言,高樓結構更柔一些,在地震作用下的變形更大一些。為了使結構在進入塑性變形階段后仍具有較強的變形能力, 避免倒塌, 特別需要在構造上采取恰當的措施,來保證結構具有足夠的延性。
2、高層結構選型
對于高層結構而言,在工程設計的結構選型階段,結構工程師應該注意以下幾點:
1結構的規則性問題
新舊規范在這方面的內容出現了較大的變動,新規范在這方面增添了相當多的限制條件,例如:平面規則性信息、嵌固端上下層剛度比信息等,而且,新規范采用強制性條文明確規定“建筑不應采用嚴重不規則的設計方案。”因此,結構工程師在遵循新規范的這些限制條件上必須嚴格注意,以避免后期施工圖設計階段工作的被動。
2.2結構的超高問題。
在抗震規范與高規中,對結構的總高度都有嚴格的限制,尤其是新規范中針對以前的超高問題,除了將原來的限制高度設定為A 級高度的建筑外,增加了B 級高度的建筑 ,因此,必須對結構的該項控制因素嚴格注意,一旦結構為B 級高度建筑甚或超過了B 級高 度,其設計方法和處理措施將有較大的變化。在實際工程設計中,出現過由于結類型的變更而忽略該問題,導致施工圖審查時未予通過,必須重新進行設計或需要開專家會議進行論證等工作的情況,對工程工期、造價等整體規劃的影響相當巨大。
2.3嵌固端的設置問題
由于高層建筑一般都帶有二層或二層以上的地下室和人防,嵌固端有可能設置在地下室頂板,也有可能設置在人防頂板等位置,因此,在這個問題上,結構設計工程師往往忽視了 由嵌 固端的設置帶來的一系列需要注意的方面,如:嵌固端樓板的設計、嵌固端上下層剛度比的限制、嵌 固端上下層抗震等級的一致性、在結構整體計算時嵌固端的設置、結構抗震縫設置與嵌 固端位置的協調等等問題,而忽略其中任何一個方面都有可能導致后期設計工作的大量修改或埋下安全隱患 。
2.4短肢剪力墻的設置問題
在新規范中,對墻肢截面高厚比為 5~8的墻定義為短肢剪力墻,且根據 實驗數據和實際經驗,對短肢剪力墻在高層建筑中的應用增加了相當多的限制,因此,在高層建筑設計中,結構工程師應盡可能少采用或不用短肢剪力墻,以避免給后期設計工作增加不必要的麻煩。
3、地基與基礎設計問題
地基與基礎設計一直是結構工程師比較重視的方面,不僅僅由于該階段設計過程的好與壞將直接影響后期設計工作的進行同時,也是因為地基基礎也是整個工程造價的決定性因素,因此,在這一階段所出現的問題也有可能更加嚴重甚至造成無法估量的損失。
在地基基礎設計中要注意地方性規范的重要性問題。由于我國占地面積較廣,地質條件相當復雜,作為國家標準僅僅一本《地基基礎設計規范》無法對全國各地的地基基礎都進行詳細的描述和規定因此,作為建立在國家標準之下的地方標準。地方性的“地基基礎設計規范”能夠將各地方的地基基礎類型和設計處理方法等一些成熟的經驗描述和規定得更為詳細和準確,所以,在進行地基基礎設計時,一定要對地方規范進行深入地學習,以避免對整個結構設計或后期設計工作造成較大的影響。
4、結構計算與分析
在結構計算與分析階段,如何準確,高效地對工程進行內力分析并按照規范要求進行設計和處理,是決定工程設計質量好壞的關鍵。由于新規范的推出對結構整體計算和分析部分相當多的內容進行了調整和改進,因此,結構工程師也應該相當地對這一階段比較常見的問題有一個清晰的認識。
4.1結構整體計算的軟件選擇
目前,由于軟件在采用的計算模型上存在著一定的差異,因此導致了各軟件的計算結果有或大或小的不同。所以,在進行工程整體結構計算和分析時必須依據結構類型和計算軟件模型的特點選擇合理的計算軟件,并從不同軟件相差較大的計算結果中,判斷哪個是合理的、 哪個是可以作為參考的,哪個又是意義不大的,這將是結構工程師在設計工作中首要的工作。 否則,如果選擇了不合適的計算軟件,不但會浪費大量的時問和精力,而且有可能使結構有不安全的隱患存在。
4.2是否需要地震力放大,考慮建筑隔墻等對自振周期的影響
該部分內容實際上在新老規范中都有提及,只是,在新規范中根據大量工程的實測周期明確提出了各種結構體系下高層
建筑結構計算自振周期折減系數。
4.3振型數目是否足夠
在新規范中增加一個振型參與系數的概念,并明確提出了該參數的限值。由于在舊規范設計中,并未提出振型參與系數的概念,或即使有該概念,該參數的限值也未必一定符合新規范的要求,因此,在計算分析階段必須對計算結果中該參數的結果進行判斷,并決定是否要調整振型數目的取值。
4.4多塔之間各地震周期的互相干擾,是否需要分開計算
一段時間以來,大底盤,多塔樓的高層建筑類型大量涌現,而在計算分析該類型高層建筑時,是將結構作為一個整體并按多塔類型進行計算,還是將結構人為地分開進行計算,是結構工程師必須注意的問題。如果多塔問剛度相差較大,就有可能出現即使振型參與系數滿足要求,但是對某一座塔樓的地震力計算誤差仍然有可能較大,從而便結構出現不安全的隱患。
4.5非結構構件的計算與設計
在高層建筑中,往往存在一些由于建筑美觀或功能要求且非主體承重骨架體系以內的非結構構件。對這部分內容,尤其是高層建筑屋頂處的裝飾構件進行設計時,由于高層建筑的地震作用和風荷載均較大,因此,必須嚴格按照新規范中增加的非結構構件的計算處理措施進行設計。
4.6高層結構設計中需要控制的七個比值
高層設計的難點在于豎向承重構件(柱、剪力墻等)的合理布置,設計過程中控制的目標參數主要有如下七個:
(1)軸壓比:主要為控制結構的延性,規范對墻肢和柱均有相應限值要求。
(2)剪重比: 主要為控制各樓層最小地震剪力,確保結構安全性。
(3)剛度比:主要為控制結構豎向規則性,以免豎向剛度突變,形成薄弱層。
(4)位移比:主要為控制結構平面規則性,以免形成扭轉,對結構產生不利影響。
(5)周期比:主要為控制結構扭轉效應,減小扭轉對結構產生的不利影響。
(6)剛重比:主要為控制結構的穩定性,以免結構產生滑移和傾覆。
(7)層問受剪承載力比:控制豎向不規則性。
【關鍵詞】高層建筑;結構;設計;探討
1 高層建筑結構設計方面的原則
1.1 選用適當的計算簡結構計算式在計算簡圖的基礎上進行的,計算簡圖選用不當則會導致結構安全的事故常常發生,所以選擇適當的計算簡圖是保證結構安全的重要條件。計算簡圖還應有相應的構造措施來保證。實際結構的節點不可能是純粹的鉸結點和剛結點,但與計算簡圖的誤差應在設計允許范圍之內。
1.2 選擇合適的基礎方案:基礎設計應根據工程地質條件,上部結構類型與載荷分布,相鄰建筑物影響及施工條件等多種因素進行綜合分析,選擇經濟合理的基礎方案,設計時宜最大限度地發揮地基的潛力,必要時應進行地基變形驗算。基礎設計應有詳盡的地質勘察報告,對一些缺少地質報告的建筑應進行現場查看和參考臨近建筑資料。通常情況下,同一結構單元不宜用兩種不同的類型。
1.3 合理選擇構方案:一個合理的設計必須選擇一個經濟合理的結構方案,也就是要選擇一個切實可行的結構形式和結構體系。結構體系應受力明確,傳力簡捷。同一結構單元不宜混用不同結構體系,地震區應力求平面和豎向規則。總而言之,必須對工程的設計要求、材料供應、地理環境、施工條件等情況進行綜合分析,并與建筑、電、水、暖等專業充分協商,在此基礎上進行結構選型,確定結構方案,必要時應進行多方案比較,擇優選用。
1.4 正確分析計算結果:在結構設計中普遍采用計算機技術,但是由于目前軟件種類繁多,不同軟件往往會導致不同的計算結果。因此設計師應對程序的適用范圍、條件等進行全面了解。在計算機輔助設計時,由于結構實際情況與程序不相符合,或人工輸入有誤,或軟件本身有缺陷均會導致錯誤的計算結果,因而要求結構工程師在拿到電算結果時應認真分析,慎重校核,做出合理判斷。
1.5 采取相應的構造措施:結構設計始終要牢記“強柱弱梁、強剪弱彎、強壓若拉原則”,注意構件的延性性能;加強薄弱部位;注意鋼筋的錨固長度,尤其是鋼筋的執行段錨固長度;考慮溫度應力的影響力。
2 高層建筑結構設計的特點
2.1 軸向變形不容忽視:高層建筑中,豎向載荷很大,能在柱中引起較大的軸向變形,對連續梁彎矩產生影響,造成連續梁中間支座處的負彎矩減小,跨中正彎矩和端支座負彎矩值增大;此外還會對預測構件的下料長度產生影響,要求根據軸向變形計算值,對下料長度進行調整;另外對構件剪力和側移產生影響,與考慮構件豎向變形比較,會得出偏于不安全的結果。
2.2 結構延性是重要設計指標:相對于底層建筑而言,高層建筑的結構更柔和一些,在地震作用下的變形更大一些。為了使高層建筑結構在進入塑性變形階段后仍具有較強的變形能力,避免倒塌,特別需要在構造上采取恰當的措施,來保證結構具有足夠的延性。
2.3 水平荷載成為決定因素:一方面,因為高層建筑樓房自重和樓面使用荷載在豎構件中所引起的軸力和彎矩的數值,僅與建筑高度的一次方成正比;而水平荷載對結構產生的傾覆力矩以及由此在豎構件中引起的軸力,是與樓房高度的兩次方成正比;另一方面,對某一定高度樓房來說,豎向荷載大體上是定值,而作為水平荷載的風荷載和地震作用,其數值是隨結構動力特性的不同而有較大幅度變化。
3 高層建筑結構的相關問題分析
3.1 結構的超高問題:在抗震規范和高規范中,對結構的總高度有著嚴格的限制,尤其是新規范中針對以前的超高問題,除了將原來的限制高度設定為A級高度以為,增加了B級高度,處理措施與設計方法都有較大改變。在實際工程設計中,出現過由于結構類型的變更而忽略該問題,導致施工圖審查時未予通過,必須重新進行設計或需要開專家會議進行論證等工作的情況,對工程工期、造價等整體規劃的影響相當巨大。
3.2 短肢剪力墻的設置問題:在新規范中,對墻肢截面高厚比為5~8的墻定義為短肢剪力墻,且根據實驗數據和實際經驗,對短肢剪力墻在高層建筑中的應用增加了相當多的限制,因此,在高層建筑設計中,結構工程師應盡可能少采用或不用短肢剪力墻,以避免給后期設計工作增加不必要的麻煩。
3.3 嵌固端的設置問題:由于高層建筑一般都帶有二層或二層以上的地下室和人防,嵌固端有可能設置在地下室頂板,也有可能設置在人防頂板等位置,因此,在這個問題上,結構設計工程師往往忽視了由嵌固端的設置帶來的一系列需要注意的方面,如:嵌固端樓板的設計、嵌固端上下層剛度比的限制、嵌固端上下層抗震等級的一致性、在結構整體計算時嵌的設置、結構抗震縫設置與嵌固端位置的協調等問題,而忽略其中任何一個方面都有可能導致后期設計工作的大量修改或埋下安全隱患。
3.4 結構的規則性問題:新舊規范在這方面的內容出現了較大的變動,新規范在這方面增添了相當多的限制條件,例如:平面規則性信息、嵌固端上下層剛度比信息等,而且,新規范采用強制性條文明確規定“建筑不應采用嚴重不規則的設計方案。”因此,結構工程師在遵循新規范的這些限制條件上必須嚴格注意,以避免后期施工圖設計階段工作的被動。
4 結語
近些年來,我國的高層建筑建設發展迅速。但從設計質量方面來看,并不理想。在高層建筑結構設計中,結構工程師不能僅僅重視結構計算的準確性而忽略結構方案的具體實際情況,應作出合理的結構方案選擇。高層建筑結構設計人員應根據具體情況進行具體分析掌握的知識處理實際建筑設計中遇到了各種問題。
參考文獻
[1]梅洪元,付本臣.中國高層建筑創作理論發展研究[R].高層建筑與智能建筑國際學術研討會,2002.